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ABSTRACT

The simplest version of the Lauritzen-Hoffman (LH) model of polymer
crystallization which applies to infinitely long model polymer molecules
crystallizing on an existing substrate of infinite width is reexamined. The
mathematical expressions for the model free energy barriers are observed to
take on negative values at hi%h supercooling. Since such negative barriers
appear to be physically unrealizable for the crystallization process, the LH
model is extended only by imposing a mathematical constraint on the
expressions for the barriers to forbid them from ever being negative. The
extended model contains one parameter vy which varies from zero to one and is
analogous to the parameter ¥ of the LH model. For all values of y less than
one, the extended model predicts a finite lamellar thickness at every
supercooling; moreover, this thickness, at large undercooling decreases
monotonical%y with increasing undercooling in agreement with experiment but in
marked contrast to the LH model which exhibits the well-known §£ catastrophe.
The relative insensitivity of the calculated lamellar thicknesses to the
parameter vy supports the use of low parameter values such as zero as a first
approximation for mathematical convenience in practice.




I. INTRODUCTION

Recently, the isothermal (unoriented) crystallization of poly(vinylidene)
fluoride (PVF,) from the melt in the presence of a high static electric field
has been studied experimentally and theoretically as a simple model system for

the investigation of the structure-property relationships of this

polymer.I‘l’I‘z

Of the four well-known crystalline forms a, 8, v, and § (or
IT1, I, III, and 1IV) of PVFZ; however, the phase which has the greatest
potential for applications via its large spontaneous polarizationI’2 is not
produced on crystallization from the melt. This phase--namely B--has been
observed to exhibit highly oriented growth (mixed with some unoriented a phase
growth) during the initial stages of crystallization from
solution under a high static field of highly plasticized PVF, (i.e. of a
concentrated solution of tricresyl phosphate and PVF, in which the tricresyl
phosphate content decreases by evaporation); at longer times, the formation of
the nonpolar a phase predominates.I'3 The decrease in plasticizer content and
the subsequent crystal growth behavior implies that the local electric field
in the solution region changes. As part of the continuing effort simply to
understand the structure-property relationships of PVF, and because of its
practical importance, our ultimate goal--despite the complexity of the system
described--is to develop a theory or model which can account for its
crystallization behavior.

As in the case of isothermal crystzllization of a and y phase froum the
melt in an electric field,I'2 a theory of isothermal crystallization of a, 8,
and § phase from concentrated solution in an electric field wou'd be based on
"classical” and "polymer" theories of nucleation and growth in the absence of
an applied field. Most importantly, the nucleation barrier or activation free
energy barrier for nucleation would certainly be different in the presence of
the field than in its absence; and this barrier has been seen to be of
fundamental importance in the theories of polymer crystallization, the

1-3

simplest of which is the LH or Lauritzen-Hoffman theory. One possibly




unrealistic feature which seems to have been incorporated into this theory in
order to simplify it is that the nucleation barrier is not constrained in the
theory to take on only nonnegative values. The word "barrier" connotes a
positive quantity, and furthermore, the LH theory is based on transition state
theory in which the barrier corresponds to an intermediate configuration or
transition state of the system which is at a free energy maximum relative to
some initial and final state of the system.4 Moreover, the LH theory
exhibits, in contrast with experiment, the §£ catastrophe wherein the
calculated average lamellar thickness ! suddenly passes through a minimum and
becomes infinite at a temperature, T., corresponding to a moderately large
undercooling; and, in fact, the nucleation barrier in this theory is positive
for all T > Tc, is zero at T = Tc, and is negative for all T < Tc for the
special case which Lauritzen and Hoffman 4,5 have recently considered.
Therefore, prior to developing an extension of the LH theory which would
involve ascertaining the effect of an electric field on the nucleation
barrier, we try to extend the LH theory to larger undercooling by
incorporating into it the assumption that free energy barriers cannot be
negative. Note that, unlike in the LH theory of polymer crystallization,
barriers in classical nucleation theory are never negative; however, the
classical theory does not explicitly take into account polymer chain folding,
and for that reason, we have not yet considered modifying the Marand and Stein

theoryI'1

of crystallization from the melt to treat the PVFz/tricresyl
phosphate crystallizing solution.

The remainder of this paper is organized as follows. 1In Section II, the
LH model is described. The kinetic treatment of the LH model is given in
Section III. The rate constants needed for this treatment are determined in
Section IV, Next, our extension of the LH model is described in Section V;
the conditions which determine the sign of A¢l, the free energy of formation
of that portion of a model polymer molecule which crystallizes first on an

existing crystal, are found in Section VI. A summary of the expressions for

the barriers in our model is given in Section VII along with the expressions




for the average lamellar thickness. In Section VIII, the variable
transformations required as a preliminary to numerical integration are
introduced. Results and discussion appear in Section IX, and conclusions are

given in Section X.

II. THE LAURITZEN-HOFFMAN MODEL

1,2 of the well-known Lauritzen-

The model to be extended is one version
Hoffman (LH) model of polymer crystallization. Our description of this
version is as follows. The model polymer molecules are assumed to be
infinitely long and crystallize on an existing crystalline face or substrate
which is assumed to be infinitely wide (i.e. the fact that its width is finite
is ignored). A sequence of length £ of polymer segments of width a and
thickness b as well as the volume associated with that sequence--which is
taken to be a parallelepiped of length £, width a, and thickness b--is
designated as a stem. Only stems of length £ can crystallize on an existing
face of length £, but the length £, the lamellar thickness, can vary from
crystal to crystal. (Of course, a and b cannot vary from face to face.) Any
sequence of length £ of segments of a model molecule can be placed first on a
given face and upon placement, is designated as the first stem. The free
energy of formation of the first stem is

Od, - bLdy = Agy - O or A¢y = 2abo; + 2blo - abiAf
where Af > 0 is the free energy of fusion per unit volume at a temperature T
below the melting point Ty of a crystal of very large 2 (Af = 0 at T = T
where o is the lateral surface free energy per unit area (i.e. that associated
with the surfaces of area bf and af of a stem), and where o, is the surface
free energy per unit area associated with the cilium that protrudes through

1-3 ,
o

each of the surfaces of area ab of the first stem. Recently, e has been

< o_. All surface free

assumed to be zero; generally, one can have6 0=<o e

’
e

energies per unit area in the model are assumed to be independent of T and £.




(See Figure 2(a) of Reference 1 or Figure 22 of Reference 2.) The placement

of each subsequent stem involves:

1. the destruction of the cilium associated with one of the surfaces of
area ab of an adjacent stem already crystallized,
2. an adjacent reentry and the formation of a tight fold associated with
two surfaces of area ab, and
3. the formation of a cilium associated with the remaining surface of
area ab of the stem being placed.
Only adjacent reentry and hence only tight folding is incorporated in this
version of the model.

The free energy of formation of the vth stem (v > 1) is therefore
A¢y - A¢y_1 - -abaé + 2abae + abaé - abfAf
or
A$, - A, = 2abo, - ablaf = -E
where A¢ , is the free energy of formation of a group of v stems (relative to
A¢o = 0) and where o is the surface free energy per unit area associated with
half of a fold. Iteration of A¢y - A¢y_1 - E (v > 1) gives

A¢y - 44, - (v-1)E

= 2blo + 2abaé - Zabae + vab(20e-2Af).

In order that stem additions subsequent to the placement of the first stem be
thermodynamically favorable, i.e. in order that they would in fact occur, one
20

must impose the constraint E > O and consequently £ > ng' By contrast, A¢1

can be positive, zero, or negative; E > O guarantees that 84, < 0 will occur

for finite v. Note the sign conventions for A¢; and E.




III. THE KINETIC TREATMENT OF THE LAURITZEN-HOFFMAN MODEL

Our description of the kinetic treatment1'2

of the LH model is as
follows. The following assumptions are made:

1. Assume that transition state theory can be utilized to describe the
kinetics of the LH model of polymer crystallization.

2. Assume that the formation (crystallization) of a single stem is an
elementary process or elementary reaction; that the destruction
(melting) of a single stem is an elementary process or elementary
reaction; and that transition state theory can be applied to these
two elementary processes with a single transition state corresponding
to a relative free energy maximum or barrier thus occurring between
each two integral values of v on a plot of A$, vs. v.

3. Assume that only one stem at a time can be formed or destroyed.

The kinetic problem is to derive an expression for the net rate SV(I,T)

at which stems of length £ (and width a) pass over or surmount the vth free

energy barrier at temperature T. The problem requires consideration of the

following set of connected elementary reactions

Bo 4 4 4
0 El 1 § 2 § 3 E 4 ..

where A is the rate constant for the forward reaction v - v+l (v 2 1) and B is
that for the reverse reaction v+l -+ v(v21), and where Ao and Bl are the
analogous rate constants for the v=0 : v=1 reactions. Solution1 of this

problem in the steady-state approximation gives

NOAO(A-B)

5,(£,T) = A-BYB,

= S5(2,T)

for all v, where No is the number of sites or locations available for the
placement of a first stem. The total net rate at which stems (i.e. the net
rate including stems of all possible values of £) pass over the vth barrier at

temperature T is given, for all v, by




STotal(T) - E; S(L,T)
2-1
where 21 is the smallest allowed value of 2 which satisfies the constraint

20
2> -Z%. Note that £ is a discrete variable--the smallest increment in £ that

can be made is the monomer repeat length Iu. To find 21, first write £ = mlu,

20
where m is a positive integer and then realize that, since £ must exceed —%

Af”
the smallest value of m must be equal to the smallest integer greater than

20 /AF 20e/Af
p ]. Therefore, 21 - [1+E(x)]£u, where x = ) and E(x) designates the
u

u

20
integer part of x. Substituting £ 6 = ;Z% into the expression for £, gives £;

20
- [liﬁiﬁl][_z%]_ To a good approximation, LE&X) (i.e. x is sufficiently

X X
o
~ —£
greater than 1) so that 21 = aF -
-
Finally, one assumes that E; S(2,T) = —%— Jw S(£,T)dL; and the
2= ully
1

kinetically-determined average lamellar thickness is then given by
I; £ S(L,T) df

1

NT) - Jm

!

S(2,T) df

IV. DETERMINATION OF THE RATE CONSTANTS

To obtain expressions for Ao, Bl, A1 and B, one must first determine
expressions for the free energy barriers for the relevant reactions v : v+l (v
= 0). Let Ey be the free energy barrier to the destruction of the first stem;
then A¢1+ El is the barrier to the formation of the first stem in order that
(A¢1+E1) - El - A¢l. Let E2 be the free enrgy barrier to the formation of
each subsequent stem; then E + E, is the barrier to the destruction of each
such stem in order that (E+E2) - Ez = E. Now one does not know the free
energy barrier to the formation of the first stem. At least, one does know

that it depends on what length £’ of a fully adsorbed stem of length £




actually crystallizes before the barrier is surmounted. If £’ = 0, then none
of the free energy of fusion is released before cthe barrier is surmounted, and
clearly, A¢1 + E1 - Zaboé+2bia and El = abfAf. In general then, for
0< 2" < 2, A¢1+E1 - 2abaé + 2blo - abf'Af and El = ab(£-£')Af. Since 2’ is
unknown, a parameter Y = lé with 0 < ¥ < 1, is introduced in order that all
possible so-called apportionments of the free energy of fusion abfAf between
the rate constants for the formation and destruction of a first stem (i.e. for
the forward and reverse reactions 0 : 1) can be considered. Thus,
A$y + Eq = 2abo + 2blo - yablAf and E, = (1-¢¥) ablaf.

Note that the greater the amount yabfAf of the free energy of fusion which is
in fact "apportioned” (i.e. the greater the value of % or £'), the smaller the
value of both A¢1 + E1 and El (for a given £ and T). A very similar
interpretation of ¥ has been discussed recently.3

Similarly, for each subsequent stem, let 2" (0 < 2" < £) be the length of
a fully adsorbed stem which actually crystallizes before the barrier to the
formation of the stem is surmounted. Then E, - Zabae - ab£"Af and E + E, =

ab(£-2")Af. Define the apportionment parameter $ - 1% with 0 =< $ < 1 so that
E, = 2abo, - $ablaAf and E + £, = (1-§) abiaf.

Finally, utilizing transition state theory,

- (A1 +E+AF) /KT -(A$+Eq ) /KT
Ay - k% . $1+E¢ )/k -pe 1+E1)/k

e-El/kT -E,/kT - (E+E,) /KT

B = 8 , A=S8ce , B=gfe

where Af is the contribution to each barrier as a result of retardations in

the transport of a polymer chain through the liquid to the substrate or vice




B
versa. Note that % does not depend on @ and that Kl does not depend on ¥ as
0

required.

V. THE EXTENSION OF THE LAURITZEN-HOFFMAN MODEL

As implied throughout the above discussion, the application of transition
state theory to the elementary processes of single stem formation and
destruction presumes that there is a single relative free energy maximuma or
barrier between each two integral values of v on a plot of Ag, vs. v
Consequently, A¢1+E1, El’ EZ' and E+E2 should never be negative.  learly, El-
(1-y) abfAf and E+E2 - (1-$)ab2Af are never negative; however, the expressions

given above for A¢1+E1 and E2 can be negative. In fact, EZ' for example, is

20
negative for all £ such that 5—2 < 2 = o« for a given Af, 9, and 0, We
Af

propose to extend the LH model by incorporating into the model the assumption
that free energy barriers cannot be negative, i.e. only apportionments of the
free energy of fusion which result in a nonnegative barrier will be allowed.

In order to incorporate this constraint into the model, first note that
A¢1+E1 - 2abaé + 2blo - PabiAf is never negative when A¢1 is positive since
then, ablfAf < Zabaé + 2bloc always holds and yabfAf < Zabaé + 2bfo follows.
However, when A¢1 is negative, the expression 2abaé + 2blo - YabZAf can be
negative. The requirement that Agq + E, 2 0 hold when A4, 1is negative implies
that one is not allowed to apportion all of the free energy of fusion abfAf
when A¢; is negative. If the amount ypablAf of the free energy of fusion which
is apportioned were to exceed 2abaé + 2bfo, then A¢1+E1 would be negative.
The maximum amount which can be apportioned is indeed 2abaé + 2bfo, and
therefore one has, when A¢1 <0,

A¢1+E1 - E(Zabaé + 2blo)

where § is an apportionment parameter with 0 < £ < 1. Using (A¢1+E1) -E; =

A¢1 or E1 - (A¢1+E1) - A¢1 gives

El - E(Zabaé + 2blo) - (2abaé + 2bfo-abfAf) = ablAf-(l-E)(Zabaé+ 2blo).




10.

Observe that the requirement that A¢1+E1 = 0 holds when A¢1 is negative is
equivalent to the physically realistic requirement that the barrier E, to the
destruction of the first stem cannot be smaller than the free energy increase
(-A¢l) that occurs upon its destruction. (Note that abZAf-(Zabaé+2b£a) -
-A41.) Also, this physically realistic requirement implies that an adsorbed
first stem cannot completely crystallize before the barrier to the formation
of that stem is surmounted, i.e. that the upper limit on £’ is less than £
when A¢1 is negative. (This upper limit on £’ is determined later.) For A¢1
> 0, the expressions A¢1 + El - 2abaé + 2bfo - yablAf and E1 = (1-y)ablAf
still hold with 0 < vy <1 and 0 < £' < 2.

At this point, a simple change of variable is introduced for convenience.
Define A = 1-¢ with 0 = A < 1.

Now our approach would appear to have introduced another parameter )\ in
addition to ¥, but this is not the case. To see this, first observe that when
A4, is positive, the free energy of fusion which can be apportioned is abfaf,
the amount in fact apportioned is yabfAf, and the fraction of the free energy
of fusion which can be apportioned that is in fact apportioned is ¥. When Ady
is negative, the free energy of fusion which can be apportioned is ablaf -
(-A¢1) - 2abaé + 2blo, the amount in fact apportioned is A(Zabaé + 2bfo), and
the fraction of the free energy of fusion which can be apportioned that is in
fact apportioned is A. If we always choose the same value for A and ¥, then
over the whole range of values for Agy, the fraction of the free energy of
fusion which can be apportioned that is in fact apportioned has the same
value. Let y denote any particular value which is chosen for both % and A,
where 0 < y < 1.

As will be seen, the symbol vy has been introduced for clarity.
Recall that ¢ = %L, but an expression for A in terms of £' or vice versa still
needs to be obtained, and furthermore, equal values of ¥ and A do pot in
general imply the same value of £’'. 1In our approach, then, 2' depends at
least on the sign of A¢1, but nevertheless, our approach has only one

parameter, +vy--the fraction of the free energy of fusion which can be
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apportioned that is in fact apportioned--which is a constant over the whole
range of values for LR
In summary, the barriers in terms of the apportionment parameter v are
A¢1 + E1 - (1~7)(2abaé + 2blo)

}for A¢1 <0
El = abfAf - 1(2abaé + 2bilo)

A¢1 + E) = Zabaé + 2blo - yabfAf
} for A¢1 20

E; = (1-y)abfaf
where we now observe that (1-7)(2abaé + 2bdc) = 2abaé + 2bfo - vyabfAf when A¢1
=0, i.e. A¢1 + E1 is a continuous function of £ and Af at the points (Z£,Af)
for which A¢; = 0. Note that the greater the value of the apportionment
parameter vy, the smaller the value of both A¢1 + El and El‘

Next, an expression for £’ in terms of X is to be derived. Given A¢1 +
El - (1-A)(2abaé + 2blo) for A¢1 < 0, one can first find ¥ when Aél < 0 holds
in terms of A by equating the expressions
(1-2)(2abo, + 2blo) = 2abo, + 2blo - pabiaf

whence
¢_,\3‘2+_22
AAf aAf

Clearly, equating these expressions and expressing ¥ when A¢1 < 0 in terms of
A is valid since decreasing 2abo; + 2bfo by an amount pabfAf must be

equivalent to decreasing 2abaé + 2bfo by A(Zabaé + 2bfo). Note that the

20’
expression [IZ% + ;%%] is always less than one when A¢1 is negative. (To see

this, simply observe that a¢y < 0 implies 2abaé + 2bfo < ab2Af, and then
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divide both sides of this inequality by abfAf.) But y = %L for all values of

A¢1 so that

2a!
¢ = apl—e , 20
2 Mlzat + aAf]
Note that since A cannot exceed one, the largest possible value of £', i.e.

20’
the upper limit on £', is £ [IK% + E%%] for A¢1 < 0; as mentioned previously,

this upper limit is indeed less that £ for a¢, < 0.
For completeness, one can also find ) when AQI > 0 holds in terms of ¥ by
equating the expressions
(1-1)(2abo, + 2blo) = 2abo; + 2bfo - pablAf

whence

¥

2% , 20
LAf 7 aaf

A-

Clearly, equating these expressions and expressing A when A¢1 > 0 in terms of
¥ is valid since decreasing Zabaé + 2bfoc by an amount pabfAf must be

equivalent to decreasing 2abc’ + 2blo by A(2abo’ + 2blo). Here again, ¢y = ll.
& e y e g 2

a'
Note that [IZ% + %%?] is always greater than one when A¢1 is positive.

In summary, then, for A¢1 < 0, one chooses a value from zero to one for

20!
the parameter -y, whence A = vy, and then calculates % = A[Ez% + ;%%]. For A¢1
> 0, one chooses a value from zero to one for the parameter 7y, whence y = v,
_ - £
and then calculates )\ = 20é TN For all A¢1, ¥y T Thus,
26f * aAf
A=

} for A¢1 <0
20!
e 20
¥ - ’\[IAf 'aAf]
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} for A¢1 >0
4

2% |, 20
28f 7 aAf

Incidentally, the constraint Zabaé + 2bfo - yYablAf = 0 combined with 0 < $ < 1

implies that the inequality

20!
0 <=y <1 the smaller of 1 and [IZ% + %%TJ

must be satisfied, and clearly our theory has satisfied it.
Similarly, the constraint abfAf - A(Zabaé + 2bfo) = 0 combined with 0 < A <1

implies that the inequality

0 < A < the smaller of 1 and 557 12
—e L0
f * aAf]

must be satisfied, and clearly our theory has satisfied it.

The approach developed above can readily be applied to incorporate into the
model the constraint that E, be nonnegative. Here, E, = Zabae - $absAf can be
negative when E is positive, and E is always positive (except when £ = Zde/Af,
which gives E = 0). The requirement E, 2 0 implies that one is not allowed to
apportion all of the free energy of fusion abfAf. If the amount QabEAf which
is apportioned were to exceed 2abo,, then E, would be negative. Therefore,
one has E2 - ry2abae where n is an apportionment parameter with 0 < n < 1. And
E+E2 - -2abae + abiAf + n2abae = abfAf - (1-n)2abae. For convenience, make

the change of variable 8§ = 1-n with 0 < § < 1 so that for all £ and Af
E2 - (1-0)2abae and E + E2 = ablAf - 02abae.

Observe that the barrier E + E2 to the destruction of the second and each
subsequent stem cannot be smaller than the free energy increase E that occurs
upon its destruction, which implies that an adsorbed second or subsequent stem

cannot completely crystallize before the barrier to the formation of that stem
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is surmounted, i.e. that the upper limit, determined below, on 2" is less than
2.

Given E2 - (1-0)Zaboe, one can find $ in terms of 4§ by equating the

expressions
(1-6)2abo, = 2abo, - PablAf
whence
20
—€
-6 5 -

Clearly, equating these expressions and expressing Q in terms of # is valid
since decreasing E, with -0 by an amount dab2Af must be equivalent to

decreasing it by §2abo,. Note that the constraint 2abae - Pabsaf = 0 implies

20
that the inequality 0 < P < TZ% must be satisfied; since 0 < 4 < 1 holds, we
. 20
have indeed satisfied this inequality. Also note that IZ% is always less than
20
or equal to one since £ = ng has been established. (Incidentally, 2abae -
20 20
$ab£Af > 0 does not imply constraints £ < —£ , Af = —£ » OF 0 > ngi.)
dat P2
an 2ae
Finally, recalling that $ ~ 3~ and substituting above gives £" = G—Kf.

In the special case ¥ = # = 0, our model reduces to the case y = 0 = 0 of

the LH model which permits negative barriers for nonzero .

VIi. DETERMINATION OF THE SIGN OF A¢1
At this point, one needs to determine when A¢1 is positive, zero, and
negative. Now A¢1 - 2abaé + 2blo - abfAf = 0 implies bf£(20-aAf) = ~2abaé; and

there are three cases to consider,.

20 -2abo_
Case (a): 20 - aAf > 0 or Af < <. Then the inequality £ > b(20-aAf)

is always satisfied since £ is always greater than zero, and hence a4, >0
holds.
Case (b): 20 - aAf = 0 or Af = %g. Then A¢1 - Zabaé, which is always

positive or zero depending on aé.




15.

Thus, combining cases (a) and (b), we have A¢1 > 0 for all £ when Af <

"R

(So far, A¢1 is zero only if both aé = 0 and Af = %g.)

Case (c): 20 - aAf < 0 or Af > 2%_ Then A¢1 2 0 implies -bf(aAf-20) =
20!
e

-2abaé or £ < Ijéfgz— - 20. Thus, when Af > %2, A¢1 2 0 holds for £ =< 20, and
anf

A¢1 < 0 holds for £ 2 20. (Observe that as Af - g% from values greater than

%g’ 20 -+ o,) There is, however, one further condition to consider here.
20 20
Recall that 2 > Z?g has been established. 1If 20 < Z?g holds, then £ > 20
holds and consequently A¢1 < 0 would hold for all £. To determine when 20 <
20’
20 —=£ 20
—=£ holds, simply write af < —£. and noting that 20 < 1, rearrange this
N3 ’ PLy ~ 20 Af’ & aAf ' g
aAf
i 20  %e % . . 20
nequality to get arf < "o - Now, if o, < 0g, this inequality would be PYX
e
20e
< 0, which is never satisfied; hence 20 < —xf never occurs when g, = aé. If
20 g
% > aé, ﬂo < ng occurs when Af > %g [;;jfz—). Thus, if % > aé and Zg < Af
20 [Le
<3 o.-01)" A¢1 2 0 holds for £ < 20 and A¢15 0 holds for £ = 20, but for af
g
o e
>3 ae'aé] » 847 < 0 holds for all £.

VII. EXPRESSIONS FOR Stotal (T) AND 2(T)

1f o, £ 0,, our model with no negative barriers has
(1) 8¢ +E, = 2abo/+2blo-yablAf for Af < 22
(2) A4 +E; = 2abo/+2blo-yablAf for af > 2% and 2 = £
(2) 861+E; = (1-7)(2abo’+2blo) for Af > 2% and £ 2 2
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and if o > o' ,

e e
(1) B4,+E; = 2abo/+2bfo-yablAf for Af < a”
g
(2) A$ +E; = 2abo+2blo-yablaf for 22 < af < 22 [ae?aé] and #s2,
(2) A$,+E, = (1-7)(2abo’+2blo) for 22 < af < 20 [Ze )
171 7 e g a “a \gg-0, ané =%
* 2 ae
(3) 8¢ +E; = (1-7)(2abo’+2bLo) for af > 22 [ae'aé}'

The purpose of categories (1), (2), and (3) will be seen shortly.
When A¢1+E1 - 2abaé + 2bfo - yablAf, E1 = (l-y)abfAf, which we call Case

When A¢1+E1 - (1-1)(2abaé + 2blo), El = abfAf - 7(2abaé + 2bfo), which we
call Case II.
One always has
E2 - (1-0)2abae
E+E2 - -Zabae + abiaf + E2 = ablAf - 02abae .

Also,
B
NhAN(Ll- £)
S(£,T) = _0_9__§l_
B

-2 *a&
. B -(E,-E,)/kT -(A¢4+E,) /KT
where % =-e E/kT, Kl -e 172 , and Ay - B e 171 .

2abo’ 2abo 20
Abbreviate c’' = kTe , C m ——ETQ , a= %%f , and recall 11 - —K%. Then

_¢ _ abaf ac _ 2bo E_ c
-2 8 , and = -c + = £. For Case I,
kT £y kT kT 1,

Ad+E 2abo’
1 -1 _ e , 2bfoc _ yablaf _ ., < R
kT kT " kT - T kT 't (a-7) £
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Ey-Bo _ (1-yyabsas  (1-9)2abo,
iT kT KT

- =5~ (1-7)2 - (1-8)c
1

For Case 11,

Ad+E (1l-v) (2abo’+2blo)
Tt - T - (1-p)e’ + %S (1-7)4

—

E,-E, abfAf-y(2abo’+2blo)  (1-6)2abo
Lt - —— CE St T (Teneve’-(-o)e

For Case I,
ﬁNoe'c' e-(a-y)c!/ll (1_ec e-c£/£1)
1-eS e-c!/ll + e(1-0)c e-(l-y)cl/ll

SI(E,T) -

For Case II,
pNoe'(l"Y)c' e-(l-‘y)acl/ll (1_ece'c2/£1)

Sirh D) = 7 o —ed7h , J(-Breve’ - (l-am)el/iy

For any Af in category (1), then,

I: £ SI(I,T)dI
s{1) (1) = 5 Jw $(2,T) d2 and 2D (1) - —1

Tota u 2
1 2 SI(Z,T)dﬂ
1

For any Af in category (2),
2
(2) 1 0 1
Stotal(T) = 3 I S;(2,TVd2 + 57— JQ S;7(2,T) 4
u 21 u 20
and

£
0
Izl ISI(E,T)dl + I:ol SII(I,T)dZ

(2)
24491y - 75
I£1 $7(2,T)de + |IOSII(B,T)d£

For any Af in category (3),

lezsll(z,T)dz

Stotar(D = Ei‘ J:lsII(l,T)dl and  20G)(1) -

11511("T)dz
For purposes of comparison, the LH model which permits negative barriers
has, for all £ and Af,

8$ +E; = 2abo + 2blo - pabfaf and E, = 2abg, - daboaf
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so that
E,-E
1752
e = (L) T
and
s(LH) (5 1y BN, e ¢ e C(@¥IE/Ly () Comcl/Ey)
. 1-e o CE/2) 4 o o-(1-$+d)ce/2;
and
f: 25 (9 Tyar
st am -2 | s™,1yas ana 2 (1) -

u I:ls(LH)(l,T)dl

As is the case in the LH model, our model has two parameters. The most
logical choice for # is 6 = v; however, even with § = vy, our integrals cannot
be evaluated analytically. There seems to be no special case (other than § =
v = 0) for which they could be evaluated analytically. At this point then, we

proceed without setting § = «v.

VIII. EVALUATION OF THE S (T) AND 2(T)--THE VARIABLE TRANSFORMATIONS FOR

Total
THE NUMERICAL INTEGRATIONS
The required numerical integrations were easily performed interactively

on the VAX using the IMSL subroutine DQDAGS?

Integrals to be evaluated using
DQDAGS cannot have an infinite limit of integration. One way to proceed
before using DQDAGS is to make a change of integration variable. Although
DQDAGS can integrate functions with endpoints singularities (when the
endpoints are finite), a change of variable which results in a transformed
integrand which is bounded at all points including the finite endpoints in the
new range of integration, is preferable to a change of variable which yields
an improper integral albeit with finite integration limits. For each of the
integrals appearing in Séi%al(T), S%ﬁial(T), and S%iéal(T), a variable
transformation which resulted in a proper integral was in fact found. The
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same transformations did not transform the corresponding integrals in the
numerators of 2(1)(T), 2(2)(T), and 2(3)(T) into proper integrals; however,
the transformed integrands were of the form (-1n x)f(x) with the singularity
resulting only from the factor 1n x as x - 0. This endpoint singularity could
be handled by DQDAGS.

Consider first the integral in S(l) 1(T). The variable transformation

Tota
consists of defining

x m g1-7)c -(1-7)cd/2y

Note that x(£f -+ «») = 0; the constant e(1'7)c, i.e. the £-independent factor,

is chosen so that x(£ = £;) = 1. Solving for £ in terms
of x gives 2 = 21[1 . %%7532] provided v » 1. Then df = -

a-y
Furthermore, e @Mt/ _ -(a-7)c x1'7, e St/ et x1-7 , and

e (I-Mecl/y _ -(1-7)¢ ¢ <6 that

- 1
-¢' _-(a-7)c a-y T N
(1) Ty - ﬂNo e " e 2 (1 x1'7 (1-x1'7) (l) dx
Total u (l-v)c 0 _1 X
1_x1-7 + e(1-9)c e-(l-y)c X
Simplifying gives
a-1 1
-¢' - (a-7)c a 1~
s qy - PMoe ¢ 4 (1 Ll R ) M
Total lu (1l-v)c 0 1

1-x177 ¢ o7 (8-1)e 4
This is one of the integrals that was evaluated numerically by DQDAGS.
Designate the integrand above as fl(x). Using the same variable

transformation to evaluate the numerator of 2(1)(T) gives

1
1n
2(1)(T) - Jozl [1-( T)C]fl(x)dx 2 21 I ( 1n x)fl(x)dx
1 T e
J0 £1(x) dx Io £f1(x) dx
2
Next, using the same transformation on the integral Ilg SI(I,T) ds

s(2)

otal(T) gives

appearing in
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2 e Ce (a7

I

05 (2,T)d2 - pN 1 (¢ dx
2, $51(£,T)at = pNg (1-7c Ixo 1(x)

where

xg = x(2mgy) = e(1NE o (1MeL/ty _ (deme o-(L-m)e’/(1-a)

with 20 - Zaé/(l-a)Af as defined previously.
y
Similarly, the integral Ilo ESI(£,T)d2 appearing in 1(2)(T) becomes
1

2 pN.e ¢ e (@-7)C 4 1 2 1
0 0 1 1
III 2S1(2,T) df = T30 {‘1 Ixofl(x)dx + Ty Io(-ln x)fl(x)dx}

A different transformation is made on the integral Jj SII(l,T) d? also
0

appearing in S(z) (T). Here, define
Total

x m ofl-7)(c-c") -(l-7)ack/f)

Again x(f -+ «) = 0; the constant e{1-7(c-¢") ;o chosen so that x(2=L£5) = x4,

2
which is given above. Solving for £ gives £ = -1 [c-c'- %?_:) ] provided vy =

ac
_h
(1-v)ac

1. Then df = - (%) dx. Furthermore, e (1-mact/y _ -(1-7)(c-c’) X,

1 ~(c-¢")(1-ayv) l-ay
e-c2/21 - e-(c-c')/a x(1-1)& -(1-07)c£/£1 -e a x(1-7)& )

, and e

Substituting gives
ﬂNoe'(1'7)c'e'(l'7)(c'C')21
JZOSII(E,T)dI- (1-7)ac

(%) dx

[c-c'] 1

-l e ) (I-7)a )
1 -c’ l-ay

] e, La-ne e ;= aen 2%
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_[c-c'] T 1)
1-e%e L @ x\:"v)e

1 _[C-C'] l-ay
<-Ne L -(6-7)ec c a ) (1-7)a

-(1-7)

ﬂNo e v c21 I
(l-v)ac _fe-c’

° l-e"e [ o ]

Designate the integrand above as fz(x). Thus,

c' -(a-v)c -(1-y)c
2 ) Ny T8 g
S otal(T) [ 2, (I-v)c Ixofl(x)dx]+[ 7 (I-pac Jo fz(x)dx]

u

Similarly, the integral Ij ISII(I,T)dl appearing in 2(2)(T) becomes
0

pNge 1T Cp (c-¢”) , (%O 5 (%
JzéSII(I,T)dE- (1-7)ac { £ 11]0 fz(x)dx+ ?TT;7;E JO (-1n x)fz(x)dx}

Therefore,

NP %ojﬁ‘; £SI(£,T)d£]+[FI-]i— ﬁozsn(g,r)u]

2
ﬂNo éo%al(T)

with the appropriate expressions for the integrals and Ségzal(T) to be
substituted above.

Finally, consider the integral in S%zzal(r)' The variable transformation
to be made on this integral is

X = e(1-‘7)ac e-(l-y)acl/ll

Again x(2 » «) = 0 and the constant e(l-y)ac is chosen so that x(l-ll) - 1.
Solving for £ gives 2 = £, [1- — DX ] provided y » 1. Then df =

(1-7)ac
2y -(l-y)ac | g-cl/l

i T ——— -(1l- £2/2
T (1-7)ac (%) dx. Furthermore, e (1-y)acl/ey _ o
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1 l-ay
e € x(1-7a , and e (L-am)el/ly _ -(l-av)c 1M oo that
1
-(1-v)(c'+ac) —
s3) (qy - Mo Hot a-x3-ve q
Total ) (I-9)ac 0 *

u —1_ l-ay
1_x(l-‘y)a + e-0c e7(c'+a<:) x(1-1)&

Designate the integrand above as f;(x). Using the same transformation to

evaluate the numerator of 1(3)(T) gives
1
(-In x)f,(x)dx
:, )

(1-v)ac Jé f3(x)dx

231y - 2+

IX. RESULTS AND DISCUSSION

A VAX FORTRAN program was written to evaluate the required mathematical
expressions. The program contains the statement CALL DQDAGS; and this IMSL
subroutine performed the numerical integrations. All calculations were done
double precision using the model parameter values given in Figure 3 of
Reference 1; namely, a = b = 5 x 10'8 cm, ¢ = 10 erg/cmz, oo = 100 erg/cmz, T;
= 500 K, Ah = 3 x 109 erg/cm3, and Af = Ah(T; -T)/T&. The average lamellar
thickness calculated from the LH model is independent of aé; this is true for
our model only for Af < %2, however. Other quantities such as STotal(T) do
depend on o, even in the LH model, and physically,6 one expects 0 < o, < Og-
In the case o, = 0, our model is slightly simpler, for then

ol

A¢1 + El = 2blo - vyablAf Af <

A¢1 + El = (1-v)2bdo Af >

wlS

Let us investigate our model in detail for the case o, = 0 first; this is also
the somewhat arbitrary choice for o/ made for the calculations!’? for the LH

model .




23.

Given the parameter values above and now with the choice 4=y, the
calculated average lamellar thickness vs. temperature curves (2 vs T) are
plotted in Figure 1 for the selected values of vy = 0.0, 0.50, 0.75, 0.90, and

0.95. Some of the data used to construct these plots is given in Table I.

20

(For Af < 2=, the average lamellar thickness is given by the expression for

2(1)(T) given previously and for Af > %g’ by the expression for 2(3)(T) also

given previously.) The effect of v on ? as a function of T is readily

apparent. For y = 0 and y = l, 2 decreases monotonically with decreasing T,
2 y B

but for vy = %, there is indeed a break or discontinuity in the slope cf 2 vs.

T, albeit barely discernible, at the temperature T* for which Af = %9 i.e. at

T = 433% K. (This statement will be qualified later.) As for y = %, 2 for v
3 20

-4 .9, and .95 decreases with decreasing T for all T for which Af > P and

there is a break in the slope of 2 vs T at T = T*. Unlike for vy = %, the

plotted 2 vs T curves for y = %, .9, and .95 pass through a relative minimum
20.

at a temperature for which Af < 5 the temperature T, at which this relative

minimum occurs appears to increase with increasing v (for y = %, it occurs

between T = 440 and 433% K and so can hardly be seen on the plot). Also, over
the interval T < T,, 2 vs T is at a relative maximum at T = T*; and 2
increases more rapidly as T approaches T* both from values greater and from

values less than T* the larger the value of y. Note that at least for all

20

values of Af > a ? at a given T is larger the larger the value of 7.

For comparison, we have reproduced Figure 3(b) of Reference 1 as our
Figure 2, which shows the LH model 2 vs. T curves with @ = ¥ for the selected
values of ¥y = 0, %, %, %, %, .9, and .95. Some of the data which we
calculated in order to construct these plots is given in Table II. The LH
model % = 0 curve is identical to our y = 0 curve. For Af < %g' each of the
LH model "y curves" is qualitatively similar but not quantitatively identical
to its corresponding "y curve" presented in Figure 1. Recall that the
quantitative difference arises from the fact that the barrier E2 has been
constrained to be nonnegative, i.e. E2 - (1-0)28bae. For Af > %g' however,

the LH model y curves are in marked contrast to the y curves; in particular,
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for each ¥ curve, 2 approaches infinity asymptotically as Af approaches %%.
This is the behavior which is known as the §f catastrophe. The above features
of the LH curves for ¥ < .95 also apply to LH curves for .95 < ¥ < 1;
calculations for the special case ¥ = 1 can be done using the analytical
expression obtained from I(LH)(T) in the case $ = 3. The curves for .95 < ¢ <
1 are similar to the ¥ = .95 curve; Figure 3(b) of Reference 1 gives a sketch
of the ¥ = 1 curve, which exhibits the §£ catastrophe at Af = %2.

By contrast, the y curves for high values of v less than one do not
exhibit an infinite average lamellar thickness. Curves for v = 0.99 and y =
0.998 are presented in Figures 3 and 4, respectively, and do exhibit the
features described previously for the y = %, .9, and .95 curves. Again, for
Af < %g’ the curves for v = .99 and v = .998 are qualitatively very similar to
LH curves with ¢ = .99 and ¥ = .998, respectively. Calculations for v > .998
as well as for y = 1 apparently cannot be done using the expressions for
2(1)(T) and 2(3)(T) as a result of the factor (l-vy) appearing in various
denominators.

One point is worth emphasizing here; namely, the relationship between «v
and ¥. 1In both our model and the LH model, y = %L, but this ratio in the LH

model is a constant, whereas in our model

T |2af T asf 1=
¢-{
v A¢1ZO
For the case aé = (O, this becomes
20 20
T ZAf Afza
¢-{
v Af < <2

[+
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Now, for any given ¥, say ¢j' 2 in the lH model is infinite for all Af = EZ%;
J

and for all Af > =22, there is no finite value of 2 for any ¢ = 9.

¢ja‘ J°
Equivalently, a value of ¥ = ¢j is not possible for a chain-folded system for
all aAf = Ezi' that is, high values of ¥ do not lead to chain-folded polymer
J

crystals at high enough supercooling according to the LH model. Experiment,
however, gives chain-folded crystals at high supercooling with an average
lamellar thickness that decreases monotonically with decreasing temperature.
As we have seen, our one-parameter (i.e. v) model with aé = 0 does reproduce
this high supercooling behavior. And yet, high values of ¢, i.e. of the ratio
%L, are not associated with our high-supercooling chain-folded systems. To

see this, first introduce the dimensionless quantity x, where 0 < x < 1. Then

for any Af = %%, Y = ;%% = 9X. Since v cannot exceed one, % in our model

cannot exceed xj for any Af Zv;zg, where xj is any given value of x. But this
J

is exactly what was found for ¥ in the LH model, i.e. that a value of 'y

greater than or equal to ¢j is not possible for any Af 2 52%. Thus, for Af >

3
%g, our model, through the imposition of the constraint that barriers be
nonnegative, places exactly the same upper limit, Z%%' on our ¥ that is

predicted for ¥ in the LH model. However, for Af > 2%, our model, unlike the
LH model, predicts 2 vs. T in qualitative agreement with experiment for all
values of our model parameter vy less than one.

Thus, the selected calculations done for our model indicate that, for the
case g/ = 0, our model does not exhibit an infinite average lamellar thickness

for any value of 7y less than one. Most importantly, at least for all T for
20

which Af > a3 » our calculations indicate that our o, = 0 model predicts 2 vs.
T curves which are monotonically decreasing with decreasing T in agreement
with experiment. That is, we have successfully extended the LH model to
highest supercooling. This success coupled with the numerical results shown
in Figure 1 increases our confidence in using low values of y such as y = 0 as

. . . . . 3
a first approximation for convenience in practice. Our model curves do show
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an anomaly, i.e. a break-in slope, at T = T*., We strongly suspect that there
is indeed a break in slope at T = T* because the relation

20 Af > 20

v - { T aaf 22
Y Af < a
. : dy . 20,
implies that aT is discontinuous at Af = a5 however, we have not yet

evaluated %% at Af = %g' This anomaly is apparently negligible up to 4 values
of about %, where the slope of 2 vs. T has the same sign (positive) regardless
of whether the point Af = %g is approached from values of Af higher or lower
than %g' As v increases, however, this anomaly becomes pronounced with the
concomitant appearance of a relative maximum in 2 at T = T* and a relative
minimum in ? at T = T,; necessarily then, the slope of 2 vs. T as Af
approaches %ﬂ from values less than %g becomes negative. We will refer to
this undesirable behavior, manifest at high values of v, as the 2 anomaly.
Unlike the 62 catastrophe in the LH model, the relative maximum in 2 vs. T, as
noted above, always appears at Af = %g for all values of y given that aé = 0.
Despite the 2 anomaly, we see that the exclusion of negative barriers--the
only difference between our model and the LH model--has strengthened the
Lauritzen-Hoffman approach to polymer crystallization.

One set of results with # » y is presented in Table III. Here, we see
that for v = % and § = 1, the calculated 2(T) differ only slightly from the
case with vy = % and § = %.

Next, we investigated our model for o, 0. (Recall that 2 for the LH
model is independent of ¢/ and that our model is independent of o, for Af <

%g.) Using the same values for a, b, o, o T;, and Ah as above and again

e’
with § = v, 2 vs. T curves for o, =0, 60, 100, and 150 erg/cmz--each with v =
%--are plotted together in Figure 5. Some of the o, » 0 data used to
construct these plots is given in Tables IV and V (and the Op = 0 data has
been seen previously in Table I). From Figure 5, we see that 2 vs. T is

relatively insensitive to the value of aé for vy - %. For aé = 0, 60, and 100
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erg/cmz, 2 decreases monotonically with decreasing T, although for o, = 100
erg/cmz, the 2 vs. T curve is almost flat near T = 405 K. For aé -
150 erg/cmz, there is a relative minimum in 2 vs. T near T = 405 K, and the
curve passes through a small and "diffuse" relative maximum at a lower
temperature. Recall that one expects 0 < o, < 0, so that with o, =
100 erg/cmz, o, = 150 erg/cm2 may not be realistic but is examined in order to
explore the model predictions as a function of o,

The 2 vs. T curves for ¢, = 0, 60, 100, and 150 erg/cmz--each with v =
% --are presented in Figure 6. The curves pass through a common relative
minimum between T = 440 and 433% K (for which Af < %g), and then each curve
rises and passes through a relative maximum, that maximum being relatively
higher and occurring at higher Af the larger the value of o,- At each
maximum, there would appear to be a break in the slope of 2 vs. T; the slope
of 2 vs. T as Af approaches %g both from values greater and from values less

than %g is greater in magnitude the larger the value of o./. Having passed
through its maximum, each curve decreases monotonically with decreasing T
thereafter.

One should be careful to note that what appears to be a break in the

(2)
slope of 2 vs. T when o, * 0 is probably not a break in slope; QA—ETLII should

be continuous for all relevant T. Whether a break in the slope of 2 vs. T
occurs at Af = g% when aé » 0 as was presumed true for o, = 0 cannot be
determined conclusively from the appearance of the graphs, although the break
appears to be absent.

Qualitatively similar 2 vs. T curves are obtained for v = 0.9 and aé =0,
60, 100 and 150 erg/cm2 as Is shown in Figure 7. Here, the relative maxima
are higher and "sharper" than the corresponding vy = % curves, and they have
moved to higher temperature. For y = 0.99, the analogous curves, shown in

Figure 8, exhibit 2 values which are unrealistically large as well as maxima

which are extremely "sharp".
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The relationship between ¥ and % with ge ¥ 0 is worth emphasizing at this
point. To reiterate, in both our model and the LH model, ¥ = %L. but this

ratio in the IH model is a constant, whereas in our model

20!
v (@ + %) seD
84 A¢1(£,T)
where the notation ¥%(£,T) and A¢1(£,T) emphasizes here the dependence of % and

IA

0

¥(L,T) = {
0

v

A¢, on £ and T. (The T dependence, of course, enters through Af.) Recalling

the conditions which govern the sign of a¢, then gives when o, > o

20 e
, for all £ when Af > == {————7]
y [20e .\ 20] a |o,-0g .
A0t anf for £ > 2. when 20 < Af < 20 £ -
0 a a 0.9

¥(L,T) =

20 a Te
{ for £ =< 20 when P < Af = a [ 7

Y ae-a'
for all £ when Af < %g
and when o < o'
e e
20é 2¢ 20
v [IK? + ZZE] for £ > 20 when Af > a
v, ) - { { for £ < 20 when Af > %2
v
for all £ when Af < aa
ZGé
where 2, - Agg_ . Now, on an 2 vs. T curve, one has

© aaf
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20é 20

v [5-— + —] 86,2, T)
¢(2,T) _{ Af aAf

IA
o

v
o

where the conditions which govern the sign of A¢1(I,T) are those given above
for A¢1(2,T) but with £ replaced by 2. Therefore, the temperature To of a
point (Io, Ty) on an 2 vs. T curve and at which A¢1(I,T) - A¢1(20,T0) =0 is

the solution to the following non-linear algebraic equation in the one unknown

T:
(2) -
2 (T) 20
or
fzo #5140+ (7 25y 1ds 204
21 1 20 II _ X
2 20
0 1l - ===
) SId£+ I; SIId£ aAf
1 0
If o, > aé , To will correspond to a value of Af in the range %g < Af =<

20 (Ce ' .

a lo,-07) but if o, < 0., Ty will correspond to a value of Af in the range
20

af > =2,
Rather than attempt to solve the above equation iteratively, one simply

plots the left-hand side 2(2)(T) vs. T and the right-hand side ZO(T) vs. T on

the same graph, and T, is given by a point of intersection of the two curves.

Note that as Af approaches %g from values greater than %2, 2, approaches
infinity and that £, decreases monotonically with decreasing T for Af > %g.

For each of the 2 vs. T curves with ”é » 0 presented in Figures 5 through 8,
we found one point of intersection (IO, To), which is designated on each curve
in the figures by an open circle. We also found that 2(2)(T) > 2; holds when
T < T, and that 2(2)(T) < 2 holds when T > T,. Thus, 44(2,T) < O holds for T
< To and A¢(2,T) > 0 holds for T > To. Our final result is that, on an 2 vs.
T curve,

{ . [EZé + 32—] 0<TsT,

P = 2af  aAf
v Ty =T < Tg
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Note that if the dimensionless quantity x, 0 < x < 1, is again introduced by

ao’

writing Af = %%, Yy = 7x[—-—g + 1} so that, unlike the case aé = 0, ¥ can exceed
o
X for some Af = %g;, where Xy is any given value of x. Clearly, one can
3

easily calculate ¥ for each point on the oy ™ 0 2 vs. T curves, but we have
not yet done so.

Thus, from the graphs, we see that the ? anomaly becomes more pronounced
but moves tu higher temperature as v increases for a fixed nonzero value of
é. That is, although the relative maximum in 2 vs. T can appear at some Af >
g

=% when aé is nonzero, the maximum becomes less pronounced as it moves to

[

lower temperature upon an increase in 4. Our model, then, does not fail at
high supercooling, but does exhibit anomalous behavior for temperatures
corresponding to values of Af "just" greater and "just" less than %g_ This
undesirable behavior is pronounced for large values of y and is more
pronounced for larger values of 49 for a given 7.

We can easily rationalize mathematically how our calculated 2vs. T

curves can rise with decreasing T for some Af > Z% when o, is nonzero. Recall

that the expression for 2(2)(T), namely

2
0
2(2)(T) Iglzsl(z,r)dz + I;ozsll(z,r)dz
Y]
0
2 S;(2,T)de + I:osll(z,r)dz

contains two different integrands SI(I,T) and SII(I,T). Depending on aé, v,
and T, the contribution of the integrals involving SI(E,T) to 2(2)(T) may
outweigh the contribution of the integrals involving SII(I,T), and in some

cases, our calculations show that to a very good approximation

)
[,0 2s (2, T)as
(2) 11 1
AT) = 7 with 2, approaching infinity.
[0 s c2,mya
1
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But this is our expression for 2(1)(T) for the interval Af < %g' and the
results of our calculations using 1(1)(T) have been found to differ little
from results using I(IH)(T), i.e. the LH theory. Not unexpectedly then,
2(2)(T) can increase with decreasing T for some Af > %g. We note that the
numerator of SI(I,T), like the numerator of S(LH)(I,T), contains the factor Ao
e ¢’ o-bL(20-vaAf) /KT

, the form of which has been associated with7 increases

in 2 with decreasing T.

X. CONCLUSICNS

Thus, the 2 anomaly is apparently connected to the expression Aé; + E) =
Zabaé + 2blo - vyabfAf even when the maximum in 2 vs. T occurs at a temperature
for which Af exceeds %2. Our results with ¢/ = 0 clearly indicate that the 2
anomaly--and in part the §£ catastrophe of the LH theory--are associated with
the interval Af < %g and are thus connected to the expression A¢1+E1 - Zabaé +
2blo - yabfAf. Even when high values of vy or ¥ are considered unrealistic as
has been elucidated3 recently, however, there is no guarantee that the LH
theory as well as our extension of it has not failed to incorporate an as yet
unknown constraint or featura which would improve the model results at high ¥y
values. For example, high vy values may be unrealistic, but the 2 values for
high v from an improved model may simply be unrealistically large but
nevertheless monotonically decreasing with decreasing T for all T. Further
work along this line would probably be mostly of theoretical interest rather
than essential for use in practice.

Although the 2 anomaly remains in our model, we have shown that the §£
catastrophe of the LH theory is in part related to the failure to exclude
negative barriers. Furthermore, our model is successful, for it shows that
the Lauritzen-Hoffman approach to polymer crystallization, subject to the
exclusion of negative barriers, is consistent with experimental behavior at
very high supercooling. We conclude that we can safely extend our version of

the LH theory to treat systems interacting with an external electric field.
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FIGURE CAPTIONS

Plots of Average Lamellar Thickness vs. Temperature for v = 0,
%, %, 0.90, and 0.5, each with aé = 0. See text for a, b, o,
Ogr T;, and Ah which are the same for Figures 1 through 8.
Figures 1 through 8 have § = 7.

at T = 4331 & (1.e. af = 29), n4; - 0.

For T

v

4333 K, 84; 2 0 and ¥ = 7.

IA

For T 433% K, A¢1 <0 and p - 1(;%%).

Plots of Average Lamellar Thickness vs. Temperature for $ = 0 1

’ l"
%, %, %, 0.90, and 0.95 reproduced from the Lauritzen-Hoffman

Model (Reference 1); plots are independent of aé.

Plot of Average Lamellar Thickness vs. Temperature for vy = 0.99

and o/ = 0. Again, for T = 433} K, ¥ = 7 and for T = 433} K,
¢-7[%]-
Plot of Average Lamellar Thickness vs. Temperature for vy = 0.998

and aé = 0. Again, for T 2 433% K, ¥ = v and for T < 433% K,

29
anf) -

Plots of Average Lamellar Thickness vs. Temperature for Og = 0,
60, 100, and 150 ergs/cmz, each with v = %. Each open circle
designates the point (20, To) at which A¢1(2,T) = 0. For T2z Ty

20!
84, 20 and = y. For T =Ty, Af; < 0 and ¥ = v [zzi + ii;].

Plots of Average Lamellar Thickness vs. Temperature for
aé - 0, 60, 100, and 150 ergs/cm2, each with v = %. Again, each

open circle identifies the temperature T, (see Figure 5).

Plots of Average Lamellar Thickness vs. Temperature for

o, = 0, 60, 100, and 150 ergs/cm’, each with y = 0.90. Again,




Figure 8.
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each open circle identifies the temperature To (see Figure 5).

Plots of Average Lamellar Thickness vs. Temperature for

aé = 0, 60, 100, and 150 ergs/cmz, each with v = 0.99.

For o, = 0, 60, 100, and 150 ergs/em’?, T, = 433 1 K, 432.2 k,

432.1 K, and 432.0 K, respectively (see Figure 5).
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TABLE CAPTIONS

Table I. Average Lamellar Thickness as a Function of Temperature for

¥y =0, %, and 0.90, each with aé = 0 and § = y. See Figure 1.

Table II. Average Lamellar Thickness as a Function of Temperature for
¥ - % and 0.90 reproduced from the Lauritzen-Hoffman Model
(Reference 1), each with Q = % and independent of aé. See

Figure 2.

Table III. Average Lamellar Thickness as a Function of Temperature for
vy - %, § =1, and o, = 0. See text for the usual values of

a, b, o, Oor Tm' and Ah.

Table IV. Average Lamellar Thickness as a Function of Temperature for

aé = 60, 100, and 150 ergs/cmz, each with v = %. See Figure 5.

Table V. Average Lamellar Thickness as a Function of Temperature for
aé = 60, 100, and 150 ergs/cmz, each with v = 0.90. See
Figure 7.
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Average Lamellar Thickness (A)
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Table I. Average Lamellar Thickness (&) vs. Temperature (K)

/

TEMP. (K) Psi=zGamma=0 Gamma=1/2 TEMP. (K) Gamma=0.90
485.000 234.383 235.303 485.000 236.013
480.000 178.390 179.781 480.000 180.839
475.000 144,660 146.556 475.000 148.300
470.000 122.074 124.507 470.000 127.027
465.000 105.867 108.867 465.000 112.435
460.000 93.652 97.253 460.000 102.279
455.000 84.105 88.342 455.000 95.475
450.000 76.429 81.344 450.000 91.672
445.000 70.115 75.762 445.000 91.275
440.000 64.826 71.267 440.000 96.119
435.000 60.328 67.641 435.000 112.616
430.000 56.451 63.528 430.000 117.625
425.000 53.072 59.481 425.000 109.730
420.000 50.100 55.988 420.000 103.882
415.000 47.463 52.941 415.000 99.316
410.000 45.105 50.259 410.000 95.563
405.000 42.984 47.877 405.000 92.353
400.000 41,064 45.744 400.000 89.529
395.000 39.316 43.821 395.000 86.992
390.000 37.718 42.077 390.000 84.676
385.000 36.251 40.484 385.000 82.538
380.000 34.897 39.023 380.000 80.545
375.000 33.644 37.676 375.000 78.673
370.000 32.480 36.429 370.000 76.905
365.000 31.396 35.270 365.000 75.225
360.000 30.382 34.188 360.000 73.622
355.000 29.433 33.176 355.000 72.087
350.000 28.540 32.225 350.000 70.612
345.000 27.700 31.329 345.000 69.190
340.000 26.907 30.484 340.000 67.817
335.000 26.157 29.683 335.000 66.486
330.000 25.446 28.924 330.000 65.194
325.000 24.772 28.201 325.000 63.938
320.000 24,130 27.513 320.000 62.714
315.000 23.518 26.855 315.000 61.519
310.000 22.935 26.226 310.000 60.352
305.000 22.377 25.624 305.000 5§9.210
300.000 21.843 25.045 300.000 58.090
295.000 21.332 24.489 295.000 56.992
290.000 20.841 23.953 290.000 55.913
285.000 20.369 23.437 285.000 54.853
280.000 19.915 22.938 280.000 53.809
275.000 19.479 22.456 275.000 52.782
270.000 19.057 21.990 270.000 51.769
265.000 18.651 21.537 265.000 50.770
260.000 18.258 21.099 260.000 49.784
255.000 17.878 20.673 255.000 48.810
250.000 17.511 20.259 250.000 47.847
245.000 17.155 19.856 245.000 46.895
240.000 16.809 19.463 240.000 © 45,953
235.000 16.475 19.081 235.000 45.021

N




Table II. Average Lamellar Thickness (X) vs. Temperature (K)

TEMP. (K) LH Psi=1/2  LH Psi=0.90
485.000 235.785 237.1686
480.000 180.224 182.177
475.000 146.926 149.552
470.000 124.780 128.225
465.000 109.027 113.507
460.000 97.290 103.129
455.000 88.251 95.962
450.000 81.124 91.560
445.000 75.412 90,139
440.000 70.789 83.098
435.000 67.037 105.777
430.000 64.009 160.924
425.000 61.610 0o
420.000 59.786
415.000 $8.519
410.000 §7.832
405.000 §7.800
400.000 ’ 58.577
395.000 60.458
390.000 64.019
385.000 70.494
380.000 82.999
375.000 112171
370.000 232.547
365.000 Go
360.000
355.000
350.000
345.000
340.000
335.000
330.000
325.000
320.000
315.000
310.000
305.000
300.000
295.000
290.000
285.000
280.000
275.000
270.000
265.000
260.000
255.000
250.000
245.000
240.000

235.000




Table III.

TEMP. (K)

495

490.
485.
480.
475.
470.
465.
460.
455.
450.
445,
440.
435.
430.
425.
420.
415.
410.
405.
400.
395.
390.
385.
380.
375.
370.
365.
360.
355.
350.
345.
340.
335.
330.
325.
320.
315,
310.
305.
300.
295.

290

285.
280.

275
270
265
260
255
250
245

.000
000
000
0no
000
000
000
600
coo
000
000
000
000
000
000
000
000
000
000
000
000
coo
000
000
000
000
000
co00
000
coo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
.000
.000

.000

.000
.000
.000
.000

240.000

235

.000

Average Lameller Thickness (2) vs. Temperature (K)

Theta=1

675.848
230.877
142.184
104.542
84.037
71.460
63.333
56.368
50.779
46.332
42.690
38.639
37.038
34.779
32.796
31.035
29.454
28.022
26.716
25.516
24.405
23.373
22.407
21.501
20.646
19.836

19.067




Table IV. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP. (K) 05/ 60 05/ 100 0.5 // 150
485.000 235.303 235.303 235.303
480.000 179.781 179.781 179.781
475.000 146.556 146.558 146.556
470.000 124.507 124.507 124.507
465.000 108.867 108.867 108.867
460.000 97.253 97.253 97.253
455.000 88.342 88.342 88.342
450.000 81.344 81.344 81.344
445.000 75.762 75.762 75.762
440.000 71.267 71.267 71.267
435.000 67.641 67.641 67.641
430.000 64.735 64.735 64.735
425.000 62.454 62.454 62.454
420.000 60.723 60.743 60.743
415.000 59.214 59.577 59.584
410.000 57.306 58.874 59.005
405.000 54.856 58.337 58.984
400.000 52.149 57.582 59.533
395.000 49.469 56.411 60.296
390.000 46.971 54.852 60.919
385.000 44.708 53.035 61.120
380.000 42.683 51.095 60.800
375.000 40.874 49.136 60.003
370.000 39.252 47.226 | 58.842
365.000 37.791 45.385 57.434
360.000 36.466 43.648 55.882
355.000 35.253 42.015 54.261
350.000 34.136 40.486 52.625
345.000 33.100 39.056 51.009
340.000 32.131 37.719 49.436
335.000 31.219 36.468 47.918
330.000 30.358 35.295 46.462
325.000 29.541 34.194 45.072
320.000 28.766 33.159 43.746
315.000 28.028 32.183 42.485
310.000 27.324 31.262 41.286
305.000 26.652 30.390 40.145
300.000 26.009 29.564 39.059
295.000 25.392 28.778 38.025
290.000 24.799 28.031 37.040
285.000 24.229 27.318 36.101
280.000 23.681 26.637 35.204
275.000 23.152 25.985 34.348
270.000 22.641 25.360 33.526
265.000 22.147 24.760 32.740
260.000 21.669 24.184 31.986
255.000 21.206 23.628 31.263
250.000 20.756 23.093 30.567
245.000 20.320 22.576 29.898
240.000 19.896 22.076 29.253

235.000 19.484 21.593 28.631




Table V. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP. (K) 0.90 /#/ 60 0.90 // 100 0.90 // 150
485.000 236.013 236.013 236.013
480.000 180.939 180.939 180.939
475.000 148.300 148.300 148.300
470.000 127.027 127.027 127.027
465.000 112.435 112.435 112.435
460.000 102.279 102.279 102.279
455.000 95.475 95.475 95.475
450.000 91.672 91.672 91.672
445.000 91.275 91.275 91.275
440.000 96.119 96.119 96.119
435.000 112.616 112.616 112.616
430.000 174.477 176.464 176.575
425.000 201.468 297.598 429.985
420.000 167.419 248.786 364.401
415.000 144.110 205.816 292.407
410.000 128.691 177.388 245.551
405.000 117.747 157.689 213.621
400.000 109.503 143.241 190.563
395.000 103.012 132.137 173.106
390.000 97.724 123.283 159.389
385.000 93.301 116.014 148.284
380.000 89.520 109.905 139.076
375.000 86.231 104.670 131.286
370.000 83.324 100.111 124.586
365.000 80.723 96.086 118.740
360.000 78.366 92.490 113.578
355.000 76.210 89.245 108.971
350.000 74.218 86.289 104.820
345.000 72.363 83.577 101.051
340.000 70.621 81.071 97.602
335.000 68.974 78.739 94.427
330.000 67.408 76.559 91.485
325.000 65.912 74.510 88.746
320.000 64.477 72.574 86.182
315.000 63.097 70.740 83.773
310.000 61.765 68.993 81.500
305.000 60.477 67.325 79.347
300.000 59.227 65.728 77.301
295.000 58.013 64.193 75.351
290.000 56.831 62.714 73.487
285.000 55.678 61.287 71.700
280.000 54.551 59.905 69.982
275.000 53.448 58.566 68.329
270.000 52.367 57.264 66.733
265.000 51.307 55.998 65.190
260.000 50.265 54.763 63.695
255.000 49.241 53.558 62.244
250.000 48.233 52.380 60.834
245.000 47.240 51.226 59.462
240.000 46.261 50.096 58.124

235.000 45.295 48.987 56.819




